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A B S T R A C T   

With the development of measurement technology, non-contact high-definition measurement (HDM) systems 
have allowed rapid collection of large-scale point cloud data, providing an opportunity to monitor the entire 
surface geometry of manufactured parts. However, traditional control charts do not apply to such large-scale 
point cloud data. Although some researchers have proposed the use of improved multivariate control charts 
for high-dimensional data, the multivariate control charts cannot be directly used for large-scale and auto-
correlated point cloud data. Considering the structural characteristics and spatial properties of the point cloud, 
this paper proposes an earth mover’s distance based multivariate generalized likelihood ratio (EMD-MGLR) 
control chart to effectively monitor point cloud surface by making full use of the three-dimensional (3D) in-
formation of point cloud data. The EMD method regards point cloud data as a distribution and calculates the 
EMD distance between the two distributions to quantify the deviation region between the point cloud surface and 
the nominal model. Combined with the multivariate generalized likelihood ratio control chart, the processing 
quality of the 3D surface can then be monitored by the statistics of EMD. The advantages of the proposed method 
are illustrated and verified by numerical and experimental examples. An experimental example on the 3D sur-
faces of combustion chambers is used to illustrate the methodology and to test its effectiveness in monitoring 
surface defects.   

1. Introduction 

In modern manufacturing, the surface form of some precision parts 
has an important influence on the overall quality of the part. However, 
due to the arbitrariness and complexity of three-dimensional (3D) sur-
faces, it is difficult to evaluate and monitor the surface defects through 
limited measurement points. Recent advancements in non-contact high- 
definition measurement (HDM) systems have provided new opportu-
nities in manufacturing and have been widely applied in many areas 
such as 3D inspection (Zhao et al., 2022), surface topography analysis 
(Yin et al., 2020; Du et al., 2015), and precision machining (Zhao, 
Cheung, & Liu, 2019). In particular, optical scanner systems are one of 
the HDM systems for surface detection, which can collect large-scale 
point cloud data in minutes and represent entire geometrical informa-
tion for measuring surfaces. The advantages of high efficiency, high 
density, and large scenes make optical scanner systems useful for 

inspecting parts with complex surface geometries. 
Compared with traditional contact acquisition systems, the point 

cloud generated by an optical scanner can fully reflect surface infor-
mation, thereby providing a data basis for 3D surface description and 
quality control. Fig. 1 shows the high-density point cloud data of engine 
cylinder head combustion chamber obtained by 3D linear laser scan-
ning. The inner surface of combustion chamber is a complex 3D curved 
surface and affects the performance of the engine. The high-density 
point cloud data obtained by HDM can completely reflect the entire 
surface geometry of the combustion chamber, providing opportunities 
for online inspection and quality control of curved surfaces. 

To monitor and control the quality of manufacturing parts, control 
chart is commonly used as an efficient, powerful tool for statistical 
process control (SPC) in modern manufacturing. However, large-scale 
point cloud data of 3D curved surfaces are out of the scope of tradi-
tional control charts, bringing challenges to online monitoring of surface 
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quality. Recently, research on multivariate control charts for monitoring 
high-dimensional data have received extensive attention (Wells et al. 
2013; Shu and Fan, 2018; Zhang et al., 2019; Mukherjee and Marozzi, 
2021). These methods consider multiple correlated quality characteris-
tics to rapidly detect process changes. But for large-scale and high 
autocorrelation point cloud data, the information of point cloud is 
neglected as it cannot be used directly in the current control charts. To 
this end, the point cloud data must be processed and summarized in a 
way that does not lose valuable information (Stankus et al., 2019). 

In addition, only a few quantitative studies have been carried out on 
the monitoring of point cloud data up to date, especially for 3D curved 
surfaces. For curved surface point clouds, it is difficult to describe an 
irregular surface by one or several features due to the complexity and 
arbitrariness of the surface shape. Nevertheless, when the shape of the 
surface is complex, non-parametric method can significantly reduce the 
complexity of the calculation. Therefore, non-parametric control charts 
have received increasing attention for efficient monitoring of 3D curved 
surfaces. Such methods can be divided into three types: scale model 
method, dimensionality reduction method, and spatial distance method. 

The scale model method compares the difference between the mea-
surement sample and the reference sample using the given metric. 
Wiliams et al. (2007) proposed the basic flow and the metrics of this 
method. Frist, the reference sample is obtained by calculating the 
average value of the sample profiles. Based on the basic sample profile, 
they proposed five metrics to measure the degree of profile deviation. 
Also, Jia et al. (2021) performed piecewise fitting on the point clouds of 
cylinders and monitored the structural deformation by the relative 
inclination. In general, a scale model method monitors processes based 
on surface feature extraction, resulting in loss of surface information. 

For complex nonlinear data, the dimensionality reduction method 
maps the data points in the original high-dimensional space to the low- 
dimensional space for ease of computation. He et al. (2017) projected 3D 
point clouds into two-dimensional (2D) grayscale images and monitored 
the images via a multivariate generalized likelihood ratio (MGLR) con-
trol chart. Likewise, Colosimo and Tajbakhsh (2014) mapped a 3D 

surface onto a 2D manifold structure through ISOMAP and performed 
parametric reconstruction of the 3D surface. In addition, Wells et al. 
(2013) transformed high-dimensional data into linear contours through 
the Q-Q plot method to reflect the relationship between the measure-
ment sample and the benchmark sample. Furthermore, Pacella and 
Colosimo (2018) used multilinear principal component analysis to 
reduce the dimensionality of multidimensional data arrays. However, 
the dimensionality reduction method inevitably causes deformation of 
the spatial structure, destroys relevant structures in the original data, 
and suffers from information loss problems (Yan, Paynabar, & Pacella, 
2019). 

Unlike scale model method and dimensionality reduction method, 
the spatial distance method measures the variability of the sample by 
calculating the distance between the sample and the nominal surface. 
Stankus and Castillo-Villar (2019) calculated the deviation of the mea-
surement points from standard Computer Aided Design (CAD) and 
applied the MGLR control chart to monitor the regions of interest (ROIs). 
However, this method requires a known nominal surface CAD model. 
Zang and Qiu (2018a, 2018b) calculated translation and rotation 
matrices of measurement points to monitor 3D printing surface quality. 
The method can be applied to arbitrary 3D surfaces with regular and 
sparse measurements but is computationally expensive for point cloud 
data. Scimone et al. (2021) used Hausdorff distance to monitor point 
cloud samples with spatial structure changes. The spatial distance 
method does not need to deform the original data and can preserve more 
of the original information than the other two methods. 

In general, for the monitoring of 3D surfaces, the existing scale model 
methods and dimensionality reduction methods are unable to process 
point cloud data directly and difficult to guarantee the spatial structure 
of arbitrary 3D surfaces. In contrast, the spatial distance method can 
directly process point cloud data and has advantages for efficient 
calculation of large-scale data. However, existing spatial distance 
methods are offset-based distance functions. Based on the closest point 
hypothesis, the closest point in the two-point cloud is considered as the 
corresponding point in these methods. As distances increase, the dis-

Fig. 1. The 3D line laser scanning point cloud data of engine cylinder head.  

Fig. 2. The comparison of the closest points and actual corresponding points.  
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tance does not conform to geometric characteristics (Solomon et al., 
2014; Chazal, Cohen-Steiner, & Mérigot, 2010). A graphical illustration 
is shown in Fig. 2. In Fig. 2, consider S and S’ are two corresponding scan 
lines on two surfaces, the coordinate points P and P’ are in one-to-one 
correspondence, the black dotted line is the actual corresponding 
points, and the blue solid line is the closest corresponding points. It can 
be seen that as the deviation between S and S’ increases, the error in 
calculating the distance between S and S’ based on the nearest point 
principle will be large, and some point cloud information is not used 
(such as P’

6 and P’
7). 

Regarding this problem, this paper explores a general 3D point cloud 
surface monitoring method, which can make full use of the 3D infor-
mation of point cloud. Based on the basic principle of the spatial distance 
method, an Earth Mover’s Distance (EMD) based control chart is pro-
posed to calculate the point cloud distance between the measured 
sample and the nominal sample. The EMD method finds the best map-
ping function from one set to the other by solving an optimization 
problem, thus provides a one-to-one correspondence between points in 
the two point clouds. The advantage of this method is that it can fully 
consider the information of all points on the point cloud and summarize 
them as EMD distance, which is sensitive to details and the density 
distribution. In order to quickly identify the process shifts and locate the 
position of surface defects, a multivariate generalized likelihood ratio 
(MGLR) based monitoring method, namely earth mover’s distance based 
multivariate generalized likelihood ratio (EMD-MGLR) control chart, is 
proposed for effective and efficient monitoring of 3D point cloud sur-
faces in the case where large-scale line laser point clouds are available. 
The remainder of this paper is organized as follows. Section 2 describes 
the proposed EMD-MGLR method. Sections 3 and 4 demonstrate the 
proposed EMD-MGLR with numerical simulations and practical studies. 
Finally, Section 5 presents the conclusions and discusses the implica-
tions for future research. 

2. The proposed method 

2.1. Framework 

In this paper, an EMD-MGLR method is proposed to monitor 3D point 
cloud surfaces. The construction of the proposed EMD-MGLR control 
chart is briefly described as follows. First, the measurement point cloud 
is collected, preprocessed and divided into ROIs. Second, the EMD value 
of each ROI for the measured samples is calculated. Finally, the MGLR 
control chart is developed for Phase I and Phase II monitoring. In Phase 
I, the qualified samples are collected to compute control limits and set 
up the EMD-MGLR control chart. In Phase II, the EMD-MGLR control 
chart is used for monitoring the process stability and identifying the 
process shifts. A flowchart that summarizes the construction procedure 
of the proposed EMD-MGLR method is shown in Fig. 3. 

From Fig. 3, the framework of the proposed EMD-MGLR method 
consists of the following four main steps: 

Step 1: Data acquisition and preprocessing. The measured point 
cloud data is preprocessed by outlier removal, missing point completion, 
and surface registration. Then, according to the size and shape of point 
cloud surface, the 3D volume space of the sample is divided into ROIs. 

Step 2: EMD calculation. EMD value represents the differences be-
tween two registered point clouds. Based on the general definition of the 
EMD between two subsets of a metric space, the distance representation 
of each ROI of the measurement sample and the nominal sample is 
calculated. 

Step 3: Phase I control chart. The Phase I control chart is designed by 
the qualified samples of the in-control process based on MGLR. Ac-
cording to the EMD values of the measured samples, the in-control mean 
vector and covariance matrix are estimated to compute the statistics. 
The control limit is set through the simulation. If the process is steady, 
the parameter values and control limit are retained by simulation. If the 
process is unsteady, recapture samples from the first step until the 
process is steady. 

Step 4: Phase II monitoring. Phase II process monitoring is performed 
to identify process shifts and provide feedback to the manufacturing 
process. The sample statistic is compared with the control limit. If the 

Fig. 3. Flowchart of the proposed method.  
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statistic exceeds the control limit, the sample is unqualified and the 
process is out of control. If the statistical data does not exceed the control 
limit, the process is in control, and the next sample is measured and 
computed according to this process. 

2.2. Data preprocessing and regional division 

In the data acquisition, the point cloud obtained by 3D line laser is of 
scanning line type, as shown in Fig. 4. In data preprocessing, outlier 
removal, missing point completion, surface registration, and region 
segmentation are required for point clouds.  

(1) Outlier removal 

Due to the influence of the measurement environment, the point 
cloud data obtained by 3D line laser are contaminated with measure-
ment noise. In order to filter the measurement noise, point cloud 
filtering is usually used to remove obvious outliers by calculating the 
average distance from each point to its k nearest points. Since the outlier 
points are sparsely distributed in space, the points outside the variance 
can be eliminated according to the given mean and variance.  

(2) Missing point completion 

Missing points are common in the point cloud due to the measure-
ment loss and outlier removal (as shown in Fig. 5). Therefore, it is 
necessary to complete the measurement points to ensure the integrity of 
the point cloud. The missing points are marked as null values and can be 
filled by the coordinate interpolation method based on the neighbor-
hood points.  

(3) Surface registration 

If the measurement centers are inconsistent, measurement samples 
need to be aligned with the nominal sample. The Principal Component 
Analysis (PCA) method (c.f. Zhao et al., 2021) can be used for rough 
registration, and the Iterative Closest Point (ICP) method (proposed by 
Besl & McKay, 1992) can be used for fine registration. The residual 

deviation after registration is relatively small with respect to the surface 
differences and can be included in the variability of the measured sur-
face (Scimone et al., 2021). The calculated distance can be regarded as 
the error value between the surface of the measurement sample and the 
nominal sample.  

(4) Region segmentation 

To summarize the deviation of point cloud data, ROIs are defined 
according to the shape and size of the point cloud surface. Megahed et al. 
(2012) restricted the ROIs to be square-shaped and overlapping. He et al. 
(2017) converted 3D point clouds into 2D gray images and divided the 
images into squares, non-overlapping ROIs. Stankus and Castillo-Villar 
(2019) divided 3D point clouds into ROIs in three directions. In this 
paper, the point cloud is segmented in the form of non-overlapping 
cubes. 

2.3. Point cloud distance calculation based on EMD 

In this method, point cloud data is regarded as a sampling of an 
unknown compact subset K of Euclidean space. The minimum distance 
between a point x in Rd and any point in set K can be calculated by the 
distance function dK : Rd→R, which maps the point x to K. To solve this 
problem, the probability distribution is introduced to the distance 
function. Considering the distance between point clouds as the distance 
between two measures, the concept is robust to outliers. The distance 
between the two measures can be measured by EMD, which quantifies 
the cost of best transporting one measure to the other. 

EMD is a method to measure image similarity proposed by Rubner 
et al. (1998) and was originally used for image retrieval. Due to its ad-
vantages (e.g., it avoids the quantification problems of most other 
measures), EMD has been used in similarity measures to measure the 
dissimilarity between two multidimensional distributions. EMD reflects 
the minimal cost of converting one signature to another. It is based on 
the transportation problem and can be formalized as the following linear 
programming problem. There are two sets of distributions: The first 
signature is P = {(p1,wp1),⋯, (pm,wpm)}, where wpi is the weight of the 
feature pi and i = 1⋯m. The second signature is Q = {(q1,wq1),⋯, (qm,

wqn)}, where wqj is the weight of the feature qj and j = 1⋯n. D = [dij]

represents the distance matrix, where dij represents the distance be-
tween pi and qj. The goal of the EMD method is to find a flow F = [fij] that 
minimizes the work required to move earth from P to Q. 

F* = argmin
F

WORK(P,Q, F) = argmin
F

(
∑m

i=1

∑n

j=1
fijdij

)

(1)  

s.t. fij ≥ 0  

∑n

j=1
fij ≤ wpi  

∑m

i=1
fij ≤ wqj  

∑m

i=1

∑n

j=1
fij = min

(
∑m

i=1
wpi,

∑n

j=1
wqj

)

The first constraint allows the flow only from P to Q, but not in 
reverse. The second and third constraints limit the amount of supply, 
which needs to be no greater than each weight w. The fourth constraint 
guarantees the maximum value of reasonable transportation. 

F* can be solved by linear programming, and the EMD value is 
calculated as. 

Fig. 4. Point cloud of scanning lines.  

Fig. 5. Missing points in a measured point cloud.  
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EMD(P,Q) =

∑m
i=1
∑n

j=1fijdij
∑m

i=1
∑n

j=1fij
(2) 

The EMD method can be extended to the point cloud distance 
calculation. Let P represents the first point cloud {p1,⋯, pi⋯, pm} with m 
points. pi is the 3D coordinate of the ith point in P. {wp1,⋯,wpm} rep-
resents the weight of each point (all are equal to 1); Q represents the 
second point cloud {q1,⋯, qj⋯, qn} with n points. qj is the 3D coordinate 
of the jth point in Q.{wq1,⋯,wqn} represents the weight of each point (all 
are equal to 1). D = [dij] represents the distance (e.g., the Euclidean 
distance) from the ith point of P to the jth point of Q. F = [fij] is 0 or 1, 
indicating whether to move the ith point of P to the jth point of Q. Then, 
WORK (P, Q, F) represents the total cost of moving points in P to points 
in Q. 

The measure representation of the point cloud P and Q is expressed 
as: P = 1

|P|
∑

x∈Pδx and Q = 1
|Q|

∑
y∈Qδy, where δx denotes the Dirac delta 

distribution of point x in P. P is taken as the point cloud to be labeled, 
and Q is the nominal sample. For the kth corresponding ROI of P and Q, 
the EMD value is calculated as. 

EMD(Pk,Qk) = min
ϕ:Pk →Qk

1
|Pk|

∑

x∈Pk

‖x − ϕ(x)‖2 (3) 

where ϕ is a bijection, x is a point in point cloud P, and k is the kth 
ROI corresponding to P and Q. This optimization problem is a trans-
portation problem, which can be effectively solved by the simplex 
method. The EMD values can be regarded as the quality statistics of a 
sample, and so the surface monitoring can be transformed into the 
multivariate control chart of EMD values. 

2.4. The MGLR control chart for the monitoring 

MGLR is an effective method to establish a multivariate control 
chart. It can detect shifts more quickly and is more convenient compared 
to other multivariate control charts, such as multivariate exponentially 
weighted moving average and multivariate cumulative sum control 
charts (Wang & Reynolds, 2013). Therefore, the MGLR control chart is 
used to monitor the EMD values of point clouds. 

For the ith sample, the EMD values are arranged in vector order: Xi =

(x1i,⋯xpi) where x is the EMD value of a region, and p is the number of 
ROIs. Assume that the production process is continuous and a series of 
samples are collected. At an unknown time τ, 0 < τ < k, the process is 

affected by abnormal factors and shifted, causing the mean value of the 
region to deviate from its distribution in the controlled state. As of time 
k, a series of samples (X1,⋯Xk) has been collected from the process. 

Then the likelihood function at time k can be expressed as. 

Lτ,k(μ0, μ1) =
∏τ

i=1
f (Xi|μ0,Σ0) ×

∏k

i=τ+1
f (Xi|μ1,Σ0) (4) 

where f() represents the probability density function of the multi-
variate normal distribution, μ is the mean vector, and Σ is the covariance 
matrix. Assume only the mean vector is shifted from μ0 to μ1, while the 
covariance matrix Σ0 remains unchanged. If the process never shifts, the 
likelihood function at time k can be expressed as. 

L∞,k(μ0) =
∏k

i=1
f (Xi|μ0,Σ0) (5) 

The statistic for the control chart is. 

Rk = max
logLτ,k(μ0, μ1)

logL∞,k(μ0)
= max

0≤τ<k

k − τ
2
(

μ̂1,τ,k − μ0
)’Σ− 1

0

(
μ̂1,τ,k − μ0

)
(6) 

where μ̂1,τ,k =

∑k
i=τ+1

Xi

k− τ is the maximum likelihood estimate of μ1. 
It can be seen from formula (6) that, at time k, all previous data needs 

to be saved to compute the value of Rk. When the value of k is large, the 
calculation is complicated. A moving time window approach restricts 
the computation to the m nearest samples, which can reduce the 
computation workload. The statistic of the moving time window is 
computed as. 

Rm,k =

⎧
⎪⎪⎨

⎪⎪⎩

max
0≤τ<k

k − τ
2
(

μ̂1,τ,k − μ0
)’Σ− 1

0

(
μ̂1,τ,k − μ0

)
k = 1, 2,⋯,m

max
k− m≤τ<k

k − τ
2
(

μ̂1,τ,k − μ0
)’Σ− 1

0

(
μ̂1,τ,k − μ0

)
k = m + 1,m + 2⋯

(7) 

When Rm,k is greater than the control limit, the control chart issues an 
alarm and the process is out of control. Wang and Reynolds (2013) gave 
the control limit values when the number of ROIs is less than 30. When 
the number of ROIs is greater than 30, the control limit can be obtained 
by process simulation. 

The control chart consists of two phases. Phases I is used to evaluate 
process stability and estimate control limits. Phases II is the control 
phase and is used for process monitoring. When the control chart gives a 
signal, the current sample is out of control. By comparing and analyzing 

Fig. 6. The measurement process of cylinder head.  
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the mean value of each ROI under the control and its value after the 
occurrence of the shift, ROIs with defects can be identified. Making full 
use of the information of the time and regions of the defects can help 
producers find the abnormal cause of the out-of-control process and take 
corrective measures to restore the production process to a steady state as 
soon as possible. 

3. Experimental analysis 

3.1. Experimental settings 

The engine cylinder head combustion chambers are taken as exam-
ples for measurement and analysis to evaluate the application of the 
proposed method. The inner surface of combustion chamber is a com-
plex 3D curved surface and is cast from a mold. The mold is in frequent 
contact with the casting material under high temperature conditions for 
a long time and is prone to wear. In turn, it affects the curved shape of 
the combustion chamber and the performance of the engine. 

Fig. 7. The processing of measurement data.  

x y
Fig. 8. The diagram of 10 × 10 ROIs.  
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In this experiment, a 3D line laser scanner in a HDM instrument was 
used to measure the surface of the combustion chamber. The HDM in-
strument can produce large-scale point cloud data of the scanned surface 
within a few minutes. Thus, it can quickly and comprehensively reflect 
the surface information, and it provides the data basis for the surface 
quality inspection of parts. The measurement process is shown in Fig. 6. 
Fig. 6 (a) is the transfer of the tested cylinder head on the production 
line. Fig. 6 (b) shows the automatic locating, clamping, and flipping of 
the measured cylinder head. The combustion chamber surface is upward 

to be measured. Fig. 6 (c) is the HDM equipment and Fig. 6 (d) is the line 
laser measurement process. During the measurement, the engine cylin-
der head is scanned by line laser from left to right on the conveyor belt. 
In this instrument, each cylinder head contains 1280 laser lines and one 
laser line contains 640 points. The accuracy in Z is ± 0.02 mm and the 
resolution of the system is 0.02 mm3. This measurement error is 
allowable in the production process. Fig. 6 (e) shows the point cloud 
data measured on an engine cylinder head. 

Table 1 
Control limits of three ROIs.  

ROI Control limit 

10 × 10  90.31 
15 × 15  94.12 
20 × 20  118.61  

y(mm)

x

Fig. 9. The diagram of in-control point clouds with defects added.  

Table 2 
The comparation of ARL1 values of different ROIs.    

ROIs 

Defect size Location coordinate of the center 10 × 10 15 × 15 20 × 20 

R = 2 (34, 30) 157.23  24.38  1.75  
(34, 55) 197.62  3.74  4.58  
(34, 5) 203.75  29.62  2.34  
(5, 34) 149. 88  24.97  11.09  
(64, 34) 193.41  17.98  11.25 

R = 1 (34, 30) 198.72  139.23  4.03  
(34, 55) 175.68  103.45  18.36  
(34, 5) 191.31  198.62  4.85  
(5, 34) 189.07  201.60  63.77  
(64, 34) 196.09  178.88  49.55  

Fig. 10. The mean EMD in each ROI of in-control samples.  

Table 3 
The ARL1 values of different defects of 20 × 20 ROIs.  

Defect 
size 

Location 
coordinate of 
the center 

Magnitude of shift 

− 0.3 − 0.2 − 0.1 +0.1 +0.2 +0.3 

R = 2 (34, 30)  1.00  11.72  45.64  37.11  1.75  1.00  
(34, 55)  1.37  7.13  159.83  79.80  4.58  1.00  
(34, 5)  1.76  4.52  55.73  46.42  2.34  1.19  
(5, 34)  1.44  11.46  59.09  68.76  11.09  3.42  
(64, 34)  3.23  15.43  62.42  53.42  11.25  1.44 

R = 1 (34, 30)  1.89  8.80  69.71  59.04  4.03  1.24  
(34, 55)  2.62  14.62  159.60  67.73  18.36  2.71  
(34, 5)  3.76  11.32  63.47  57.32  4.85  1.63  
(5, 34)  1.73  62.41  170.63  180.77  63.77  5.16  
(64, 34)  1.56  57.63  162.18  197.61  49.55  1.44  

Fig. 11. The converted grayscale image of a combustion chamber surface.  
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3.2. Data preprocessing and regional division 

The point cloud data of the engine cylinder head contains the cyl-
inder head plane and combustion chamber surface. In the point cloud 

preprocessing step, we align the cylinder head surface with the x-y 
plane, and remove the plane point cloud according to the z coordinate. 
Then, according to the point cloud processing process in Subsection 2.2, 
the cylinder head combustion chamber point cloud is processed by 
removing outliers, filling missing points, and surface registration. The 
data processing process is shown in Fig. 7. 

The next step is to divide the volume occupied by the point cloud into 
ROIs. ROIs are defined as non-overlapping cubes. First, the coordinate 
boundaries [x min, x max], [y min, y max], and [z min, z max] are 
calculated. Then, the numbers of grids m, n, and l are set in the x-axis, y- 
axis, and z-axis directions. The size of each sub-region is 
(

x max− x min
m ×

y max− y min
n × z max− z min

l

)
. In this case, the coordinate bound-

aries of combustion chamber surface are x[0,70 mm], y[0,62 mm], and z 
[0,10 mm]. The numbers of ROIs influence the effect of control chart 
and need to be discussed. Since the combustion chamber surface does 
not overlap in the z-axis, the z-axis is not divided. The point cloud is 
divided in the x-axis and y-axis directions. Fig. 8 shows that the point 
cloud data of a combustion chamber surface is divided into 10 × 10 
ROIs. 

3.3. Numerical experiment 

3.3.1. Phase I of MGLR control chart 
In Phase I, the control chart is established under the stable process, 

and the control limit of the control chart is calculated through simula-
tion. A random term is added to the real measurement point clouds as 
simulation samples to set up the MGLR control chart. In the z-axis di-
rection, a noise value that obeys Gaussian distribution with the mean of 
0 and the standard deviation of 0.02 is added. The control limit of MGLR 
control chart is designed through the following steps: 

Step 1: Select an initial value of control limit h. Calculate MGLR 
statistics for a group of simulation data. When the statistic of the ith 
sample Ri > h, stop the calculation and record the current run length 
(RL). Calculate the next group of samples and repeat this process 
until all groups are processed. Calculate the average run length 
(ARL) of all groups. 
Step 2: Compare the ARL with the target value ARL0. If ARL > ARL0, 
decrease h; If ARL < ARL0, increase h. 
Step 3: Recalculate the ARL value according to the updated h. Repeat 
this step until ARL ≈ ARL0. The corresponding h value is regarded as 
the control limit of MGLR control chart. 

In this experiment, the in-control average run length is set as ARL0 =

Table 4 
The comparation of ARL1 values of four methodologies.  

Defect 
size 

Magnitude 
of shift 

He et al. 
(2017) 

Stankus 
et al. 
(2019) 

Scimone 
et al. 
(2021) 

The 
proposed 
method 

R = 2  +0.3  1.31  1.00  5.45  1.00   
+0.2  1.76  2.75  13.76  1.00   
+0.1  2.82  3.89  47.05  2.23   
− 0.1  2.73  4.77  53.82  2.89   
− 0.2  1.42  1.21  10.07  1.00   
− 0.3  1.20  1.00  7.37  1.00 

R = 1  +0.3  1.62  1.00  18.21  1.00   
+0.2  2.85  2.07  55.10  1.54   
+0.1  3.96  5.61  79.12  5.76   
− 0.1  5.69  6.87  127.41  4.80   
− 0.2  3.77  2.80  48.52  1.96   
− 0.3  2.04  1.00  19.51  1.00  

Fig. 12. The monitoring process of the proposed method.  

Fig. 13. The monitoring process of He et al. (2017).  

Fig. 14. The monitoring process of Stankus et al. (2019).  
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200. 1000 samples are generated for each group, and 1000 groups are 
simulated to obtain the control limit of MGLR control chart. 

In addition, in the MGLR control chart, two conditional parameters 
(the number of past scans and the number of ROIs) are related to the 
calculation of the MGLR statistics and need to be optimized. 

A small number of past scans, m (in formula (6)), cannot immediately 
identify defects, while a large m increases the computational burden, 
especially when the number of ROIs is large. He et al. (2017) discussed 
m = 10 as the literature standard. He et al. (2016), Pacella et al. (2017), 

and Stankus et al. (2019) all used m = 10 as the standard value of past 
scans considering the convenience of calculation and the ability to 
quickly identify defects. In this experiment, therefore, m = 10 is selected 
as the number of past scans. 

With a small number of ROIs, it is difficult to quickly identify small 
defects and impossible to accurately locate the defect location; a large 
number of ROIs will make it difficult to calculate large-scale metrics. The 
selection of ROIs is also different for different measurement samples. For 
the measurement samples used in this experiment, three ROIs of 10 ×
10, 15 × 15, and 20 × 20 are chosen to be discussed, because they can 
quickly find process shifts and have a relatively short computation time. 
The control limits of three ROIs are calculated and shown in Table 1. 

The control limits are obtained by establishing the control charts of 
phase I and utilized in Phase II for process monitoring. The next sub-
section describes the application of the proposed method in Phase II by 
artificially adding defects. 

3.3.2. Phase II of MGLR control chart 
In the casting process, the wear of the die will cause surface dents. 

The simulated dent defects are added to the in-control point clouds for 
testing. Fig. 9 shows the diagram of in-control point clouds with red- 
marked defects areas and the arrow-marked locations of defect cen-
ters. As shown in Fig. 9, circular dents are added at five random loca-
tions, where the depth is 0.2 mm and the radius is 2 mm or 1 mm. 

In Phase II, the simulated defects in Fig. 9 are added to the simulation 
as out-of-control samples. 1000 defect samples are generated, and the 
simulation is repeated 1000 times in each condition. ARL1 values are 
compared in three ROIs of 10 × 10, 15 × 15, and 20 × 20 (shown in 
Table 2). 

The number of ROIs has a significant impact on the ARL1 value. The 
greater the number of ROIs (i.e., the smaller the area size), the more 
effective the monitoring of the control chart. Similarly, the larger the 
defect size, the more accurate the recognition of the control chart. 
Therefore, the size of ROI depends on the expected size of the defects. 
The monitoring effect for large defect size is higher than that for small 
defect size. In the proposed method, the case of 15 × 15 ROIs has an 
effective result for the defect size of R = 2, while it needs 20 × 20 ROIs 
for R = 1. Therefore, in practice, if the expected size of the defects is 
small, then a larger number of ROI is required. Meanwhile, the effect of 
the proposed method is significantly improved with the increase of the 
number of ROI. 

In the same size of defects, ARL1 values have differences in different 

Fig. 15. The monitoring process of Scimone et al. (2021).  

Table 5 
The FDR and FAR of the methods in the process monitoring.   

He et al. 
(2017) 

Stankus et al. 
(2019) 

Scimone 
et al. 
(2021) 

The proposed 
method 

FDR 0.906 0.953  0.547 0.984 
FAR 0 0  0.016 0  

Fig. 16. Measurement points. The red areas are the defects. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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defect locations. Control charts can quickly identify the shift when the 
defect location is in the center of the surface: (34, 30), which is related to 
the sample shape and measurement error. Fig. 10 is the mean EMD value 
of each ROI calculated from the in-control samples. The EMD at the edge 
is large, which shows that the fluctuation of the measurement data is 
large in these regions. This is because the shape of combustion chamber 
surface. The large inclination angle of the edge of the measured surface 
affects the imaging of the laser scanning line. In the center position, the 
measured surface is closer to the plane, and the measurement accuracy is 
higher compared with the edge position. As the number of ROIs in-
creases, the EMD value of the surface becomes smoother, and so the 
recognition of defects is more effective. Table 2 and Fig. 10 discuss the 
effect of ROI size, defects size, and location on the control chart. The 20 
× 20 ROI has the best results and is performed in the MGLR control 
chart. 

Next, the influence of the magnitude of shift on the control chart 
effect is discussed. The 20 × 20 ROI is performed in the MGLR control 
chart. The dents (magnitude is positive) and bulges (magnitude is 
negative) are added to the simulation samples as defects. The magni-
tudes of shifts are − 0.3 mm, − 0.2 mm, − 0.1mmm, +0.1 mm, +0.2 mm, 
and + 0.3 mm. The ARL1 values are shown in Table 3. 

Table 3 discusses the size, location, and magnitude of defects. Same 
to Table 2, the monitoring effect of control chart for large defect size is 

better than that for small defect size. The monitoring effect of the central 
areas is better than that of edge areas. In addition, for the magnitude of 
shift, the monitoring effect of the large shifts is better than that of the 
small shifts. In the listed cases, magnitude of shift has a greater impact 
on the control chart monitoring effect than defect size. 

3.4. Method comparison 

The proposed EMD-MGLR method is compared with three state-of- 
the-art methods proposed by He et al. (2017), Stankus et al. (2019), 
and Scimone et al. (2021). The first two methods are also based on the 
MGLR control chart, and the last method is based on the Hausdorff 
distance. In the method comparison, the same ARL0 value is set in the in- 
control process, and the ARL1 values are compared in Phase II. In Phase 
II, the defect samples of all five defect types in Fig. 9 are simulated. 

He et al. (2017) converted point cloud data into grayscale images 
through 2D mapping and monitored the grayscale values. In this 
method, the point clouds are converted into grayscale values, as shown 
in Fig. 11. Height values of point clouds are converted to the interval [0, 
255]. Each grayscale image is divided into 20 × 20 ROIs. The mean of 
the gray values in each ROI is calculated and then monitored by the 
MGLR control chart. 

The method proposed by Stankus et al. (2019) is to calculate the 
deviation value between the measurement point and the standard sur-
face, convert the deviation value through Fast Fourier transform, and 
monitor the mean deviation value of each ROI through the MGLR con-
trol chart. To facilitate comparison, the same qualified sample is selected 
as the nominal surface. The distance between the point on the measured 
sample and the closest point on the nominal surface is calculated as the 
deviation value. 

Scimone et al. (2021) used Hausdorff distance to model the deviation 
between the measurement sample and the nominal sample. They per-
formed principal component analysis on probability density functions of 
Hausdorff distance, and then monitored the geometric differences of the 
measured samples through T2 and Q control charts. They used this 
method to monitor structural defects in 3D printing, benefiting from the 
sensitivity of the Hausdorff distance to extreme points. In this method, 
T2 and Q statistics are used to represent the quality characteristics of the 
measured samples, and region segmentation is not required. 

Set ARL0 = 200 for all methods, i.e., type I error α = 0.005. In Phase 
II, 1000 samples with defects are simulated (each defect sample includes 
all five defect types in Fig. 9) and are repeated 1000 times. The ARL1 
value of each situation is shown in Table 4. 

Among these four methods, the proposed method has the minimum 

Fig. 17. The EMD values of qualified and unqualified samples.  

Fig. 18. Plot for mean EMD of qualified and unqualified samples.  
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ARL1 value in most cases. The method proposed by He et al. (2017) is 
effective in the case of small shift, the method proposed by Stankus et al. 
(2019) is effective in the case of large shift, while the method proposed 
by Scimone et al. (2021) is difficult to identify the small shift. The 
proposed method is effective for both large shift and small shift. In the 
case of different defect sizes, the recognition effect of these four methods 
for large defect size is better than that for small defect size. The method 
proposed by He et al. (2017) is insensitive to defect size changes, and the 
recognition effect is not as good as the proposed method when the defect 
size is large. 

4. Process monitoring and further analysis 

The proposed method is implemented on process monitoring to 
emphasize how it can be used in practice. 

4.1. Process monitoring 

The traditional detection method for the combustion chamber is to 
regularly inspect the mold through a coordinate measuring machine 
(CMM). The technician manually selects the measurement position and 
quantity of the combustion chamber mold and evaluates the surface 
quality through engineering experience. The results are then compared 
with the model in the z-axis direction to determine whether the z-di-
rection deviation of each measuring point is within ± 0.3 mm. Deviation 
beyond this range indicates that the area near this point is defective. 
When the number of unqualified points is large, the combustion cham-
ber is considered unqualified. In this process, the number and the 
location of measuring points and the quality evaluation are all based on 
engineering experience. However, this method has a long measurement 
time and high cost and can only take measurements at intervals, which 
easily leads to engineering losses. In the production process, 64 un-
qualified combustion chambers were produced due to mold wear. These 
samples are measured in HDM and compared with the measured qual-
ified samples by using the proposed method. 

In this study, 64 qualified samples and 64 worn combustion chamber 
samples were measured by the 3D line laser scanner. The first qualified 
sample was taken as the nominal sample. 20 × 20 ROIs and the simu-
lated control limit in Subsection 3.3.1 are utilized. The method is 
applied to process monitoring, in which the production process is out of 
control after the 63rd sample. 

The monitoring process of the proposed method is shown in Fig. 12. 
The process shift is identified from the second unqualified sample. In 
addition, out of 64 unqualified samples, 63 unqualified samples are 
identified by this method. In the actual machining process, this method 
can quickly identify the process shift and accurately identify the un-
qualified samples. 

4.2. Method comparison 

The three state-of-the-art methods introduced in Subsection 3.4 are 
also used for comparisons with the proposed EMD-MGLR method in this 
process monitoring study. 

For the methods of He et al. (2017) and Stankus et al. (2019), the 
MGLR control charts are established and the 20 × 20 ROIs are selected, 
whereas the method of Scimone et al. (2021) is based on T2 and Q 
control charts for process monitoring. The statistics of 127 samples are 
computed for all three methods, and the control charts are established 
for process monitoring, as shown in Figs. 13-15. 

The method proposed by He et al. (2017) (Fig. 13) identifies the 
process shift at the fourth unqualified sample, and 58 of the 64 un-
qualified samples are identified. The method proposed by Stankus et al. 
(2019) (Fig. 14) identifies the process shift at the fourth unqualified 
sample, and 61 of the 64 unqualified samples are identified. The method 
proposed by Scimone et al. (2021) (Fig. 15) identifies the process shift at 
the second unqualified sample, and 35 of the 64 unqualified samples are 

identified. 
To assess the results of each method, false detection rate (FDR) and 

false alarm rate (FAR) are adopted, which can be calculated by: 

FDR =
The number of false samples correctly detected

Total number of false samples  

FAR =
The number of normal samples distinguished as false samples

Total number of normal samples 

Table 5 shows the FDR and FAR results of the three comparison 
methods and the proposed method. 

The proposed method has the highest FDR. Compared with the three 
state-of-the-art methods, the true detection rate of unqualified samples 
is improved by 8.6 %, 3.3 % and 79.9 % respectively. The values of FAR 
are all 0 except for the method of Scimone et al. (2021). Compared with 
other methods, the proposed method can identify the process shift 
fastest and has the highest detection rate for unqualified samples. 

4.3. Defect region identification 

In the proposed method, each sample is divided into non-overlapping 
cube regions. Because the division is based on spatial volume, this 
method can provide a reference for defect region recognition. 
Comparing the results of the proposed method and the measurement of 
CMM, the identification of defect regions is discussed. 

The worn mold is inspected by CMM, and the detection result is 
shown in Fig. 16. The detection points are evenly distributed in the x- 
axis and y-axis directions. Each region represents a measurement posi-
tion. Since some areas associate with missing measurement points, only 
the areas with valid measurement points in both methods are compared. 
Fig. 17 shows the mean EMD values of the qualified and unqualified 
samples based on HDM. For comparison, the EMD values are converted 
into a vector form by column arrangement, as shown in Fig. 18. 

The mean EMD of qualified and unqualified samples are calculated 
and compared in Fig. 18. The blue line represents the mean EMD value 
of the 20 × 20 ROIs calculated from the 63 in-control point clouds, the 
red line represents the mean EMD value of the 64 unqualified samples, 
and the red circles indicate defect regions previously shown in Fig. 16. In 
the defect regions, the EMD value of the unqualified sample deviates 
significantly from the EMD value of the qualified sample, and the defect 
regions can be identified. However, in some regions, such as the 71st, 
and 105th regions, the EMD of the unqualified sample is also signifi-
cantly larger than the mean EMD of the qualified samples. There are 
three possibilities: (1) Due to the characteristics of the samples and 
HDM, the shape of these regions fluctuates greatly, and the EMD values 
in these regions have a large variance. (2) As CMM only measures one 
point in each ROI, it cannot represent the whole region, thereby 
increasing the risk of misjudgment. (3) CMM measures the mold to 
indirectly reflect the quality of the part, which is different from the 
actual shape of the part surface. In general, the EMD values of the 
measured samples can provide a reference for identifying and deter-
mining the location of surface defects. 

5. Conclusions 

In this paper, an EMD-MGLR method is proposed for surface moni-
toring of 3D point clouds to quickly identify and locate surface defects. 
With point cloud data, the proposed method calculates the EMD value to 
represent the difference between the measured surface and the nominal 
surface. To identify the process shifts, the 3D surface is divided into 
ROIs, and the EMD value of each ROI is monitored through MGLR based 
control chart. This method can satisfy the required efficiency for 
calculation of point cloud data with large-scale characteristics and can 
effectively identify process shifts, which provides a reference for the 
identification and location of surface defects. In numerical experiments, 
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the proposed method is validated by actual measured data of engine 
cylinder head combustion chambers. The experimental results show that 
the proposed method outperforms the state-of-the-art methods in iden-
tifying the process shift. In the process monitoring study, the proposed 
method rapidly identifies the process shift and gives the highest detec-
tion rate for unqualified samples. In addition, the proposed method does 
not require projection nor image transformation of 3D point clouds or a 
known CAD model. Thus, it can be applied to point cloud surfaces of 
arbitrary shapes. Moreover, in this experiment, the ROIs’ positions are 
divided along the x-axis and y-axis, and all regions are assumed to be the 
same size. For more complex surface shapes, ROIs can also be divided 
along the z-axis. There are several possible directions for future research:  

(1) Currently, only offline measured data has been used for analysis. 
The proposed method can be combined with online HDM to 
establish control charts based on historical data for online 
monitoring, thereby providing real-time feedback on the process.  

(2) The proposed method is based on the MGLR control chart and can 
identify the mean shift. The method of the control chart could be 
further studied to monitor other types of process changes, for 
example, changes in covariance. 
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